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CRITICAL EQUILIBRIUM STATE

OF A BUSHING IN A CONTACT PAIR

WITH CRACKS POSSESSING PLASTIC TIP ZONES

UDC 539.375V. M. Mirsalimov

The problem of mechanics of contact fracture is considered for a bushing in a friction pair. It is
assumed that multiple reciprocating motion of the plunger leads to fracture of the bushing material
owing to friction caused by contact interaction and accompanied by the joint effect of loading and
temperature. It is assumed that there are several arbitrarily located straight-line cracks with tip zones
near the contact surface of the bushing. The stress state of the bushing is examined in the presence
of regions where the crack faces (or some part of them) come into contact.

Key words: bushing in a contact pair, fracture, crack, plastic flow.

1. Experience in exploitation of bushing–plunger friction pairs shows that the fracture of the bushing
material occurs in contact spots in thin surface layers owing to formation of microcracks. Therefore, at the stage
of design of the structure of moving joints, one has to take into account that cracks may appear in individual
structural elements (bushing, plunger) and to perform the critical analysis of the elements of the contact pair to
ensure that the tentative initial cracks located in the most adverse manner will not reach a critical size and will
not cause fracture during the expected service life. The size of the initial minimum crack should be considered as
a design characteristic of the material.

Let us consider the stress–strain state of the bushing in operation of the contact pair. Let the bushing in
the vicinity of the friction surface contain N straight-line cracks with tip zones of length 2lk (k = 1, 2, . . . , N).

We place the origins of the local coordinate systems xkOkyk into the crack centers; the axes Okxk of these
coordinate systems coincide with the crack directions and form the angles αk with the axis Ox (Fig. 1). A high
concentration of stresses in the vicinity of the crack tip sometimes leads to softening of the material surrounding the
crack. This can be manifested in formation of plastic-flow regions. An analysis of experimental data and conditions
of equilibrium and crack development with allowance for interaction between the crack faces and softening zones
suggests a model of a crack with a tip zone (pre-fracture zone) with a constant-stress plastic flow. Some publications
consider crack models that imply the presence of a constant-stress plastic flow in tip zones commensurable in size
with the crack length (see the review in [1]).

Let us identify the crack segments d1k and d2k (tip zones) adjacent to the crack tips, which are regions of
a constant-stress plastic flow for the examined material. Interaction of the crack faces in the tip zones is modeled
by introducing plastic slip lines (degenerate plasticity bands) between the crack faces. The size of the tip zones
depends on the type of the material.

As the tip zones and the thickness of the plastic-flow zone are small as compared with the remaining (elastic)
portion of the bushing, they can be replaced by cuts whose surfaces interact in accordance with a certain law and
prevent crack opening.
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Fig. 1. Numerical scheme of the problem of contact-fracture mechanics.

The contact pressure and friction forces (external loads) acting on the bushing in the tip zones connecting
the crack faces generate normal forces σyk

(xk) = σs and tangential forces τxkyk
(xk) = τs. Thus, the normal stresses

σs and tangential stresses τs are applied to the crack faces in the tip zones. The sizes of the tip zones are unknown
in advance and have to be determined in solving the considered problem of fracture mechanics. The crack faces
outside the tip zones (in the internal region of the crack) are free from loading.

We introduce a polar coordinate system at the center of concentric circumferences L and L0 with radii R

and R0, respectively.
The boundary conditions for the problem considered have the following form:
— for r = R,

σr = −p(θ), τrθ = −fp(θ) (1.1)

on the contact area and

σr = 0, τrθ = 0 (1.2)

outside the contact area;
— for r = R0,

vr = 0, vθ = 0; (1.3)

— on the crack faces,

σyk
= 0, τxkyk

= 0 on L′
k (k = 1, 2, . . . , N),

σyk
= σs, τxkyk

= τs on L′′
k.

(1.4)

Here f is the friction coefficient of the contact pair, vr and vθ are the radial and tangential components of the
displacement vector, σr and τrθ are the stress-tensor components, L′

k are the free faces of the kth crack, and L′′
k are

the faces of the kth crack with the tip zones where the plastic flow occurs. It is assumed in (1.1)–(1.4) that the
tangential (shear) stress in the contact zone is related to the normal pressure p(θ) by the Coulomb–Amonton law.
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The contact pressure is unknown in advance and has to be determined in solving the contact-fracture
mechanics problem. To solve this problem, one has to jointly solve the wear-contact problem of plunger pressing
into the bushing surface and the problem of fracture mechanics.

Let a plunger with mechanical characteristics G1 and µ1 be pressed into the inner surface of a bushing with
mechanical characteristics G (shear modulus) and µ (Poisson’s ratio) at a certain point unknown in advance. The
outer surface of the bushing is assumed to be supported by a rigid shell. The problem is solved under conditions of
planar deformation.

The condition relating the bushing and plunger displacements is written as follows [2, 3]:

v1 + v2 = δ(θ) (θ1 � θ � θ2). (1.5)

Here δ(θ) is the settlement of the points of the bushing and plunger surfaces, which is determined by the shape
of the inner surfaces of the bushing and plunger and also by the magnitude of the pressing force P ; θ2 − θ1 is the
magnitude of the contact angle (area).

The shear (friction) forces τrθ(θ, t) favor heat release in the contact zone. The total amount of heat released
per unit time is proportional to the power of friction forces, and the amount of heat released at the point of the
contact zone with the coordinate θ is

Q(θ, t) = V fp(θ, t)

(V is the velocity of plunger motion with respect to the bushing, averaged over the period).
The total amount of heat Q(θ, t) is spent on increasing the temperature of the bushing Qb(θ, t) and plunger

Q1(θ, t):

Q = Qb + Q1.

For radial motion of the bushing, we have

v1 = v1y + v1u, (1.6)

where v1y are the radial thermoelastic displacements of the points of the contact surface of the bushing and v1u are
the displacements caused by bushing-surface wear.

To simplify the problem, displacements caused by the collapse of microbuldges of the bushing surface are
ignored.

In a form similar to Eq. (1.6), we can write a relation for the radial displacement of the plunger v2.
The wear of the elements of the contact pair is assumed to be abrasive. The velocity of motion of the surface

due to bushing-material wear is determined by the formula [3, 4]
dv1u

dt
= Kbp(θ, t), (1.7)

where Kb is the wear coefficient of the bushing material.
The bushing is heated as a result of its friction on the plunger surface during reciprocating motion. As the

frequency of plunger motion is rather high, the problem is considered in a steady formulation.
To determine thermoelastic displacements v1y, we have to find the temperature distribution in the bushing.

For this purpose, we solve the heat-conduction problem

∆T = 0 (1.8)

in the bushing,

AT1λ
∂T

∂r
− AT2α1(T − Tc) = −Q∗ for r = R,

λ
∂T

∂r
+ α2(T − Tc) = 0 for r = R0.

(1.9)

Here λ is the thermal conductivity of the bushing, ∆ is the Laplace operator, α1 is the coefficient of heat transfer
from the inner surface of the bushing, α2 is the coefficient of heat transfer between the outer surface of the cylinder
and the ambient medium at the temperature Tc, Q∗ is the amount of heat released due to friction, which is spent
on bushing heating (Q∗ = Qb on the contact area and Q∗ = 0 outside the contact area), AT1 is the area of the
heat-consuming surface, and AT2 is the area of the cooling surface.
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The problem of thermoelasticity for determining the displacements of the contact surface of the plunger is
formulated in a similar manner.

The values of θ1 and θ2 corresponding to the ends of the segment of the bushing–plunger contact are
unknown. To determine them, we use a condition [5] that implies that the pressure p(θ) continuously tends to zero
and vanishes when the point θ reaches the boundary of the contact zone:

p(θ1) = 0, p(θ2) = 0. (1.10)

2. The solution of the boundary-value problem of the heat-conduction theory is sought by the method of
separation of variables. The distribution of the excess temperature of the bushing tb = T − Tc is found in the form

tb = C1 + C2 ln r +
∞∑

k=1

(C(k)
1 rk + C

(k)
2 r−k) cos kθ +

∞∑
k=1

(A(k)
1 rk + A

(k)
2 r−k) sin kθ,

where the constants C1, C2, C
(k)
1 , C

(k)
2 , A

(k)
1 , and A

(k)
2 are determined from the boundary conditions of the heat-

conduction problem (1.8), (1.9). Being too cumbersome, these formulas are not given here.
To solve the problem of thermoelasticity, we use the thermoelastic potential of displacements [6]. In the

problem considered, the thermoelastic potential of displacements for the bushing F is determined by solving the
differential equation

∆F =
1 + µ

1 − µ
αtb, (2.1)

where α is the coefficient of linear thermal expansion.
The solution of Eq. (2.1) is sought in the form

F =
∞∑

n=0

(fn cosnθ + f∗
n sin nθ).

For the functions fn(r) and f∗
n(r), we obtain ordinary differential equations solved by the method of variation of

constants. Determining the thermoelastic potential of displacements for the bushing by known formulas [6], we find
the corresponding stresses σ1

r , σ1
θ , and τ1

rθ and displacements v1
r and v1

θ . The resultant stresses and displacements
for the bushing do not satisfy the boundary conditions (1.1)–(1.4).

For the bushing, we need to find the second stress–strain state σ2
r , σ2

θ , τ2
rθ, v2

r , and v2
θ to satisfy the boundary

conditions (1.1)–(1.4). To determine the second stress–strain state in the bushing, we have the following boundary
conditions:

— for r = R,

σ2
r = −p(θ) − σ1

r , τ2
rθ = −fp(θ) − τ1

rθ (2.2)

on the contact area and

σ2
r = −σ1

r , τ2
rθ = −τ1

rθ (2.3)

outside the contact area;
— for r = R0,

v2
r = −v1

r , v2
θ = −v1

θ ; (2.4)

— on the crack faces,

σ2
yk

= −σ1
yk

, τ2
xkyk

= −τ1
xkyk

on L′
k,

σ2
yk

= σs − σ1
yk

, τ2
xkyk

= τs − τ1
xkyk

on L′′
k.

(2.5)

Using the Kolosov–Muskhelishvili formulas [5], we can write the boundary conditions (2.2)–(2.5) as the
boundary-value problem for complex potentials Φ(z) and Ψ(z) for the bushing.

The complex potentials are sought in the form

Φ(z) = Φ1(z) + Φ2(z), Ψ(z) = Ψ1(z) + Ψ2(z); (2.6)
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Φ1(z) =
∞∑

k=−∞
akzk, Ψ1(z) =

∞∑
k=−∞

bkzk,

Φ2(z) =
1
2π

N∑
k=1

lk∫
−lk

gk(t) dt

t − zk
, Ψ2(z) =

1
2π

N∑
k=1

e−2iαk

lk∫
−lk

( gk(t)
t − zk

− Tk eiαk

(t − zk)2
gk(t)

)
dt,

(2.7)

where Tk = t eiαk +z0
k; zk = e−iαk(z−z0

k); gk(xk) are the sought functions characterizing the jump in displacements
in passing the corresponding crack.

The boundary-value problem for seeking for the complex potentials on the circular boundaries can be pre-
sented in the following form:

Φ1(τ) + Φ1(τ) − e2iθ[τ̄Φ′
1(τ) + Ψ1(τ)] = X(θ) − (σ1

r − iτ1
rθ) − (f1 − if2),

Φ1(τ0) − kbΦ1(τ0) − e2iθ[τ̄0Φ′
1(τ0) + Ψ1(τ0)] = −2G(v1

r − iv1
θ)′ − (f3 − if4).

(2.8)

Here kb = 3 − 4µ, τ = R exp (iθ), τ0 = R0 exp (iθ), and X(θ) = −(1 − if)p(θ) on the contact area and X(θ) = 0
outside the contact area;

f1 − if2 = Φ2(τ) + Φ2(τ) − e2iθ[τ̄Φ′
2(τ) + Ψ2(τ)],

f3 − if4 = Φ2(τ0) − kbΦ2(τ0) − e2iθ[τ̄0Φ′
2(τ0) + Ψ2(τ0)].

To solve the boundary-value problem (2.8) with respect to the potentials Φ1(z) and Ψ1(z), we use the method
of power series. For this purpose, we expand the right sides of conditions (2.8) into the Fourier series. After some
transformations, we obtain an infinite linear algebraic system with respect to the coefficients ak and bk, whose
solution is written as

a0 =
(A0 + A′

0 + D0)R2 − (F0 + D′
0)R

2
0

2R2 − (1 − kb)R2
0

, a−1 =
(A1 + A′

1 + D1)R
1 + kb

,

b−2R
−2 = 2a0 − A0 − A′

0 − D0, b−1 = −kb(A1 + A′
1 + D1 )R

1 + kb
,

ak =
(1 + k)(R2

0 − R2)Bk − B−k(R−2k+2 + kbR
−2k+2
0 )

(1 − k2)(R2
0 − R2)2 − (R−2k+2 + kbR

−2k+2
0 )(R2k+2 + kbR

2k+2
0 )

(k = ±2,±3, . . .),

Bk = (Fk + D′
k)R−k+2

0 − (Ak + A′
k + Dk)R−k+2,

a1 =
2(A1 + A′

1 + D1)R(R2
0 − R2)

(1 − kb)(R4 + kbR4
0)

− B−1

R4 + kbR4
0

,

bk−2R
k−2 = (1 − k)akRk + ā−kR−k − (Ak + A′

k + Dk).

The following expansions are used here:

X(θ) =
∞∑

k=−∞
Ak eikθ , −(σ1

r − iτ1
rθ) =

∞∑
k=−∞

A′
k eikθ , −(f1 − if2) =

∞∑
k=−∞

Dk eikθ,

−2G(v1
r − iv1

θ)′ =
∞∑

k=−∞
Fk eikθ , −(f3 − if4) = D′

k eikθ .

The right sides of these formulas contain integrals of the sought functions gk(t) and the coefficients of expansion of
the contact pressure p(θ).

The functions (2.6) and (2.7) should satisfy the boundary conditions at the crack faces (2.5). From this
condition, we obtain a system of N singular integral equations with respect to the unknown functions gk(xk):
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N∑
k=1

lk∫
−lk

[
Rnk(t, x)gk(t) + Snk(t, x)gk(t)

]
dt = π[fn(x) + f ]; (2.9)

|x| � ln (n = 1, 2, . . . , N),

fn(x) = −(σ1
yn

− iτ1
xnyn

) − [Φ1(xn) + Φ1(xn) + xnΦ′
1(xn) + Ψ1(xn)],

f =

{
σs − iτs on L′′,

0 on L′,
L′ =

N∑
k=1

L′
k, L′′ =

N∑
k=1

L′′
k.

Here x, t, and ln are dimensionless variables normalized to R; the values of Rnk and Snk are determined from
relations given in [7].

The system of singular integral equations for internal cracks should be supplemented by the equalities
lk∫

−lk

gk(t) dt = 0 (k = 1, 2, . . . , N). (2.10)

The system of complex singular integral equations (2.9) under the above-indicated conditions (2.10) reduces
to a system of N × M complex algebraic equations [7, 8] for N × M unknowns gn(tm) = vn(tm) − iun(tm)
(n = 1, 2, . . . , N ; m = 1, 2, . . . , M):

1
M

M∑
m=1

N∑
k=1

lk

[
gk(tm)Rnk(lktm, lnxr) + gk(tm)Snk(lktm, lnxr)

]
= fn(xr) + f, (2.11)

M∑
m=1

gn(tm) = 0 (n = 1, 2, . . . , N, r = 1, 2, . . . , M − 1).

Here tm = cos ((2m− 1)π/(2M)) (m = 1, 2, . . . , M); xr = cos (πr/M) (r = 1, 2, . . . , M − 1). If we pass to complex-
conjugate quantities in (2.11), we obtain additional N × M algebraic equations that contain the unknown sizes
of the tip zones d1k and d2k (k = 1, 2, . . . , N). For this reason, the algebraic systems (2.11) are nonlinear. To
construct the missing 2×N equations determining the sizes of the tip zones, we use the condition of finite stresses
at the crack tips. Finite values of stresses at the crack tips are provided by the joint action of the external load and
stresses on the crack faces in the tip zones (postulate on elimination of singularities). The postulate of elimination
of singularities is equivalent to the condition of the zero final coefficient of stress intensity, which is determined as
the difference between the intensity of stresses caused by external forces and the intensity of stresses induced by
pressing forces applied at the tip zones of the crack.

Thus, the equations for determining the sizes of the tip zones d1k and d2k have the form
M∑

m=1

(−1)mgk(tm) cot
2m− 1

4M
π = 0 (k = 1, 2, . . . , N),

M∑
m=1

(−1)M+mgk(tm) tan
2m − 1

4M
π = 0.

(2.12)

Using the thermoelastic potential of displacements, complex functions (2.6), (2.7), Kolosov–Muskhelishvili
formulas, and integration of the kinetic equation (1.7) of wear of the bushing material, we can find the displacement
of the contact surface of the bushing v1.

The problem of thermoelasticity for the plunger is considered in a similar manner. Using the solution of
this problem and the kinetic equation of wear of the plunger material, we can find the displacement of its contact
surface v2.

The found values of v1 and v2 are substituted into the main contact equation (1.5). To substitute the main
contact equation by an algebraic equation, the unknown functions of the contact pressure in a sufficiently small
time interval are sought in the form of expansions
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p(θ, t) = p0(θ) + tp1(θ) + . . . ,

p0(θ) = α0 +
∞∑

k=1

(αk cos kθ + βk sin kθ),

p1(θ) = α1
0 +

∞∑
k=1

(α1
k cos kθ + β1

k sin kθ),
(2.13)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A small time interval was chosen because the solution with a small initial interval of time is of greatest
interest for a designer. A sufficiently large time interval requires the use of another expansion.

Substituting Eq. (2.13) into the main contact equation, we obtain functional equations for consecutive
determination of p0(θ), p1(θ), etc.

To construct a resolving algebraic system for finding the coefficients of the contact-pressure function in
both sides of the functional equation of the contact problem, we equate the coefficients at identical trigonometric
functions. As a result, we obtain an infinite algebraic system with respect to α0

k (k = 0, 1, 2, . . .), β0
k (k = 1, 2, . . .),

α1
k, β1

k, etc.
Because of the presence of unknown quantities θ1 and θ2, the system of equations of the contact problem is

nonlinear.
The right sides of the infinite algebraic systems contain integrals of the unknown functions gk(t). In other

words, system (2.11), (2.12) and the infinite algebraic system with respect to αk, βk are related and have to be
solved together.

The combined system of equations is nonlinear because of the presence of the unknowns θ1, θ2, d1k, and
d2k (k = 1, 2, . . . , N). To solve this system, we use the method of consecutive approximations [8]. Let us solve
the combined algebraic system for certain values of θ1∗, θ2∗, d∗1k, and d∗2k (k = 1, 2, . . . , N) with respect to the
unknowns gk(tm) (k = 1, 2, . . . , N ; m = 1, 2, . . . , M), αk, and βk. For this purpose, we have to solve a linear
algebraic system. The values of θ1∗, θ2∗, d∗1k, and d∗2k (k = 1, 2, . . . , N) and the found values of the remaining
unknowns are substituted into the unused Eqs. (1.10), (2.12). Generally speaking, the values of θ1∗, θ2∗, d∗1k, and
d∗2k and the corresponding values of the remaining unknowns will not satisfy Eqs. (1.10) and (2.12). Therefore, the
values of the parameters θ1∗, θ2∗, d∗1k, and d∗2k (k = 1, 2, . . . , N) are found by iterations until the last equations of
the system (1.10) and (2.12) are satisfied with a prescribed accuracy.

The considered problem of mechanics of contact fracture has many free parameters: various thermophysical
and mechanical characteristics of materials, geometric sizes of the bushing and plunger, and velocity of plunger
motion. For numerical implementation of the method described above, we performed calculations for a U8-6MA2
two-way slush pump. The resultant quantities obtained were the coefficients of the contact-pressure function,
approximate values of the functions g0

k(tm) = v0
k(tm) − iu0

k(tm) at nodal points, and the sizes of the tip zones
of the cracks and the contact area. Knowing the contact pressure, we can find the temperature distribution, the
stress–strain state, and the wear of the elements of the contact pair.

To determine the limiting equilibrium of the crack tip with plastic-flow tip zones, we use the condition of
the limiting (critical) opening near the foundation of the plastic zone. The critical state is assumed to occur at the
moment when the following condition is satisfied at the edge of the tip zone of the plastic flow:√

u2(x0) + v2(x0) = δk.

Here u(x0) = u+ − u−, v(x0) = v+ − v−, and δk is the experimentally determined constant of the material, which
characterizes the limiting opening of the crack under given conditions.

With allowance for the above-obtained solution, we have

−1 + kb

2G

x0∫
−lk

gk(x) dx = vk(x0, 0) − iuk(x0, 0) (k = 1, 2, . . . , N).

Using the substitution of the variable, replacing the integral by the sum, and separating the real and imaginary
parts, we obtain
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Fig. 2. Contact pressure versus the polar angle for the slush-pump bushing (V = 0.4 m/sec).

vk(x0, 0) = −1 + kb

2G

πlk
M

M1k∑
m=1

v0
k(tm), uk(x0, 0) = −1 + kb

2G

πlk
M

M1k∑
m=1

u0
k(tm).

Here M1k is the number of nodal points in the interval (−lk, x0).
Thus, the condition determining the limiting load at which the crack-tip motion occurs (breakdown of bonds

in the plasticity band) is

1 + kb

2G

πlk
M

√
A2 + B2 = δk, (2.14)

where

A =
M1k∑
m=1

v0
k(tm), B =

M1k∑
m=1

u0
k(tm).

For the case of one crack, the calculated contact pressure p̂ = p(θ′)R/∆E is plotted in Fig. 2 as a function of
the polar angle θ̂ = θ′/θ0 [θ′ = θ−θ+, θ0 = (θ2−θ1)/2, and θ+ = (θ2+θ1)/2] for the plunger velocity V = 0.4 m/sec.
The following values of parameters are used as constants: 2R0 = 73 mm, 2R′ = 56.7 mm, 2R = 57 mm, f = 0.2,
E = 1.8 · 105 MPa, E1 = 2.1 · 105 MPa, µ = 0.25, µ1 = 0.3, Kb = 1.2 · 10−10, ∆ = 0.3 mm, and α1 = 45◦.

The contact pressure after the tenth stroke of the plunger was calculated. The greatest values of the contact
pressure are normally located in the middle part of the contact surface, depending on the contact angle and friction
coefficient. The presence of friction forces in the contact zone shifts the distribution of the contact pressure in the
direction opposite to the moment direction.

For a slush-pump bushing, the dimensionless length of the tip zone of plasticity d11/l1 versus the di-
mensionless contact pressure p/σs is plotted in Fig. 3 for V = 0.4 m/sec and different lengths of the crack
[l̂ = l1/(R0 − R) = 0.2, 0.3, and 0.4].

The joint solution of the combined nonlinear system of equations and Eq. (2.4) allows us to determine the
critical contact pressure as a function of the crack length, sizes of the plastic tip zones and the contact area, and
also the values of the sought functions v0(tm) and u0(tm) (m = 1, 2, . . . , M). Figure 4 shows the dimensionless
critical load p∗ = p/σs versus the dimensionless length of the crack l∗ = 8σsl1/(πEδk) in a slush-pump bushing for
a velocity V = 0.4 m/sec.

3. An analysis of the stress state of the bushing in a constant pair shows that regions of compressing stresses
appear in the course of operation of the contact pair, as the plunger is pressed into the bushing surface. We assume
that there exist zones where the crack faces (or some part of them) are in contact. We assume that these zones are
adjacent to the crack tips, and their sizes are unknown in advance, are commensurable with the crack length, but
are smaller than the size of the plastic tip zones.
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Fig. 3. Length of the tip zone of the plastic flow versus the contact pressure for the slush-pump

bushing (V = 0.4 m/sec): l̂ = 0.2 (1), 0.3 (2), and 0.4 (3).

Fig. 4. Limiting load versus the crack length for the slush-pump bushing.

We consider crack segments of length l̂1k and l̂2k (k = 1, 2, . . . , N) (contact tip zones) adjacent to the crack
tips at which the crack faces are in contact. Interaction of the crack faces prevents crack opening.

In the tip zones, where the crack faces are in contact, there arise normal stresses qyk
(xk) and shear stresses

qxkyk
(xk). The values of these contact stresses are unknown in advance and have to be determined in solving the

boundary-value problem of mechanics of contact fracture. We have to recall that each crack considered in the
present case consists of three zones: internal zone and two tip zones. The internal zone of the crack comprises the
crack faces free from loads. Two tip zones of the crack are the plastic tip zone (l̂1k, d1k), (l̂2k, d2k) and the tip zone
(−lk, l̂1k), (l̂2k, lk) where the crack faces are in contact.

The boundary conditions on the crack faces are

σyk
= 0, τxkyk

= 0 on L′ (k = 1, 2, . . . , N),

σyk
= σs, τxkyk

= τs on L′′,

σyk
= qyk

, τxkyk
= qxkyk

on L′′′.

Here L′′′ =
N∑

k=1

L′′′
k ; L′′′

k is the kth tip zone in which the crack faces are in contact. The remaining boundary

conditions of the problem of contact-fracture mechanics are the same as those in Sec. 2.
To solve the problem posed, we have to repeat the procedure of deriving the basic resolving equations

of the problem. The system of N × M complex algebraic equations for determining N × M unknowns g1
n(tm)

= v1
n(tm) − iu1

n(tm) (n = 1, 2, . . . , N ; m = 1, 2, . . . , M) acquires the form

1
M

M∑
m=1

N∑
k=1

lk

[
g1

k(tm)Rnk(lktm, lnxr) + g1
k(tm)Snk(lktm, lnxr)

]
= fn(xr) + f(xr),

M∑
m=1

gn(tm) = 0 (n = 1, 2, . . . , N, r = 1, 2, . . . , M − 1),

(3.1)

where
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TABLE 1

l1/(R0 − R) d11/(R0 − R) d21/(R0 − R) l̂11/(R0 − R) l̂21/(R0 − R)

0.05 0.013 0.017 0.009 0.011
0.10 0.039 0.052 0.031 0.028
0.15 0.067 0.074 0.058 0.069
0.20 0.087 0.0931 0.087 0.076
0.25 0.095 0.108 0.091 0.087

f =

⎧⎨
⎩

0 on L′,
σs − iτs on L′′,

qyk
− iqxkyk

on L′′′.

In the case considered, the right sides of system (3.1) also contain the unknown values of the contact stresses qyk
(xk)

and qxkyk
(xk) at the nodal points that belong to the contact tip zones.

The condition determining the unknown contact stresses arising on the crack faces in the contact tip zones
is the condition of the absence of crack opening in these zones. In the problem considered, it is more convenient to
write this additional condition for the derivative of the opening displacements of the crack faces:

g1
k(xk) =

2G

i(1 + kb)
∂

∂xk
[u+

k (xk, 0) − u−
k (xk, 0) + i(v+

k (xk, 0) − v−k (xk, 0))] = 0. (3.2)

Here xk is the affix of the points of the faces of the contact tip zones of the kth crack.
Requiring conditions (3.2) to be satisfied at the nodal points contained in the tip zones (−lk, l̂1k) and (l̂2k, lk),

we obtain the missing equations for determining the approximate values of the contact stresses qyk
(tm1k

)
and qxkyk

(tm1k
) at the nodal points:

g1
k(tm1k

) = 0 (k = 1, 2, . . . , N ; m1k = 1, 2, . . . , M1k). (3.3)

Here M1k is the number of nodal points that belong to the contact tip zones of the kth crack.
To close system (3.1), (3.3), we need additional 2 × N equations determining the tip-zone sizes. From the

conditions of finite stresses near the crack tips, we determine the size of the contact tip zones. Writing the conditions
of stress finiteness, we obtain the missing 2 × N equations in the form

M∑
m=1

(−1)mg1
k(tm) cot

2m− 1
4M

π = 0 (k = 1, 2, . . . , N),

M∑
m=1

(−1)M+mg1
k(tm) tan

2m − 1
4M

π = 0.

(3.4)

As the sizes of the contact tip zones are unknown, the system of algebraic equations (3.1), (3.3), and (3.4) is
nonlinear. In this case, the combined algebraic system consisting of the resolving system of equations of the contact
problem and systems (3.1), (3.3), (3.4) is nonlinear because of the presence of the unknowns θ1, θ2, l̂1k, and l̂2k

(k = 1, 2, . . . , N). To solve this system, we use the method of consecutive approximations. Solving the combined
system allows us to determine the values of the coefficients αk and βk of the expansion of the contact-pressure
function, the values of the sought functions g1

k(tm) at the nodal points, the values of qyk
− iqxkyk

at the nodal points
that belong to the contact tip zones, and the sizes of the contact tip zones.

The parameters d11/(R0−R), d21/(R0−R), l̂11/(R0−R), and l̂21/(R0−R) versus the crack length l1/(R0−R)
for the plunger velocity V = 0.4 m/sec are summarized in Table 1 for the bushing of the U8-6MA2 slush pump.

The case where one end of certain cracks (or all cracks) reaches the inner surface of the bushing is considered
in a similar manner. In this case, the number of conditions in (2.10) is smaller by the number of cracks reaching
the bushing surface. For surface cracks, equalities (2.10) are replaced by the conditions of stress finiteness on the
face reaching the surface r = R.

Modeling of crack growth in the bushing in a contact pair in the course of its operation reduces to a parametric
study of a resolving algebraic system of a wear-contact problem, a system of singular integral equations (2.9)
and (3.1), equations (2.12), (3.3), and (3.4), and the crack-growth criterion (2.14) for different values of the free
parameters of the friction pair.
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